67 research outputs found

    Automated Machine Learning for Multi-Label Classification

    Get PDF

    Automated Machine Learning for Multi-Label Classification

    Full text link
    Automated machine learning (AutoML) aims to select and configure machine learning algorithms and combine them into machine learning pipelines tailored to a dataset at hand. For supervised learning tasks, most notably binary and multinomial classification, aka single-label classification (SLC), such AutoML approaches have shown promising results. However, the task of multi-label classification (MLC), where data points are associated with a set of class labels instead of a single class label, has received much less attention so far. In the context of multi-label classification, the data-specific selection and configuration of multi-label classifiers are challenging even for experts in the field, as it is a high-dimensional optimization problem with multi-level hierarchical dependencies. While for SLC, the space of machine learning pipelines is already huge, the size of the MLC search space outnumbers the one of SLC by several orders. In the first part of this thesis, we devise a novel AutoML approach for single-label classification tasks optimizing pipelines of machine learning algorithms, consisting of two algorithms at most. This approach is then extended first to optimize pipelines of unlimited length and eventually configure the complex hierarchical structures of multi-label classification methods. Furthermore, we investigate how well AutoML approaches that form the state of the art for single-label classification tasks scale with the increased problem complexity of AutoML for multi-label classification. In the second part, we explore how methods for SLC and MLC could be configured more flexibly to achieve better generalization performance and how to increase the efficiency of execution-based AutoML systems

    Meta-Learning for Automated Selection of Anomaly Detectors for Semi-Supervised Datasets

    Full text link
    In anomaly detection, a prominent task is to induce a model to identify anomalies learned solely based on normal data. Generally, one is interested in finding an anomaly detector that correctly identifies anomalies, i.e., data points that do not belong to the normal class, without raising too many false alarms. Which anomaly detector is best suited depends on the dataset at hand and thus needs to be tailored. The quality of an anomaly detector may be assessed via confusion-based metrics such as the Matthews correlation coefficient (MCC). However, since during training only normal data is available in a semi-supervised setting, such metrics are not accessible. To facilitate automated machine learning for anomaly detectors, we propose to employ meta-learning to predict MCC scores based on metrics that can be computed with normal data only. First promising results can be obtained considering the hypervolume and the false positive rate as meta-features

    AutoML for Multi-Label Classification: Overview and Empirical Evaluation

    Get PDF

    Hyperparameter optimization in deep multi-target prediction

    Full text link
    As a result of the ever increasing complexity of configuring and fine-tuning machine learning models, the field of automated machine learning (AutoML) has emerged over the past decade. However, software implementations like Auto-WEKA and Auto-sklearn typically focus on classical machine learning (ML) tasks such as classification and regression. Our work can be seen as the first attempt at offering a single AutoML framework for most problem settings that fall under the umbrella of multi-target prediction, which includes popular ML settings such as multi-label classification, multivariate regression, multi-task learning, dyadic prediction, matrix completion, and zero-shot learning. Automated problem selection and model configuration are achieved by extending DeepMTP, a general deep learning framework for MTP problem settings, with popular hyperparameter optimization (HPO) methods. Our extensive benchmarking across different datasets and MTP problem settings identifies cases where specific HPO methods outperform others.Comment: 17 pages, 4 figures, 1 tabl
    • …
    corecore